
WS7102 
fast forward to web-scale architecture

Flight





WS7102 
fast forward to web-scale architecture

Flight



Publication details

This book was written by members of Info Support’s 
Architecture Competence Center.
They are: Raimond Brookman, Ronald Bosma, Wiljag 
Denekamp, Wim van Gool, Sander Molenkamp, Rogier 
Schrama and Edwin van Wijk, all of whom are soft-
ware architects at Info Support. They received help in 
writing the text from Freek Jansen at LEWIS Commu-
nication Agency and freelance copywriter Martijn Vet.

The illustrations are by Wiljag Denekamp and Edwin 
van Wijk, and the layout was done by Erika Watt-van 
de Bovekamp.

All the characters and events in this story are fictional. 
Any resemblance to real persons, living or dead, or to 
real events, is purely coincidental.

First edition: October 2016

© Info Support B.V. Veenendaal, the Netherlands 2016

No part of this publication may be reproduced in any form by print, photo 

print, microfilm or any other means without written permission from  

Info Support B.V.







Preface 

This novel takes us on the journey made by two CIOs, 
who meet on Flight WS7102.
Peter has just had the toughest week of his career, and 
is happy to be able to leave his troubles behind him. 
Isn’t it time for him to start looking for a new job? He 
had wanted to think this over during the flight, but 
things turn out other than planned when he meets 
fellow professional Harold.

During the journey, Harold and Peter talk about their 
experiences in IT architecture. Harold tells Peter what 
web-scale architecture entails, why he chose to apply 
it and how Peter’s organization could profit from it.

Web-scale IT was introduced a few years ago by Gart-
ner, the world’s leading information technology rese-
arch and advisory company. It is still viewed primarily 
as a vision of IT, inspired by the practices of Silicon 
Valley giants such as Google and Facebook. ‘Web-sca-
le’ in this case means extremely flexible and scalable. 
This process is facilitated by a web-scale software 
architecture.

Gartner was less forthcoming about precisely how 
such an architecture should be realized. At Info 
Support, we have developed our own vision on this 
subject: a very specific interpretation of the term 
‘web-scale architecture’. It’s an architecture that we 
feel is supported by eight subjects that are closely 



related to each other: microservices, CQRS, event-dri-
ven architecture, event sourcing, actor model, po-
lyglot ‘X’, BASE / NoSQL and domain-driven design. 
Most of these subjects and their underlying relati-
onship are discussed in this book.

 

The idea of this fictional IT novel is loosely based 
on the 2013 book The Phoenix Project, in which the 
concept of DevOps is explained. This is not a complete 
coincidence, since both DevOps (an agile set of prac-
tices for team collaboration) and continuous delivery 
(updating software in short cycles) are perfectly suited 
to web-scale architecture.



We hope you enjoy reading this book!

But we will take a closer look at this elsewhere in this 
book. Flight WS7102 can be seen as a combination of a 
travel story and a fictional case study. Peter’s hospital 
and Harold’s airline are both imaginary, but they could 
just as well be real.
That’s something that became apparent while writing 
this book; soon after the first brainstorming session, 
the writers realized that the crisis in the hospital at the 
beginning of this story had already occurred, almost 
identically, in the real world.

Whether that hospital also found its solution in 
web-scale architecture, we don’t know, but it could 
perhaps form the basis for a sequel….





11

1. A ‘minor’ update

The CIO we’re looking for meets challenges head-on, 
and can respond flexibly to unforeseen situations.

“That’s me,” Peter de Graaf hears himself saying out 
loud. Which is strange, since there’s no-one there to 
hear him. He’s finally alone for a while. Finally relieved 
of having to answer to anyone, in contrast to the past 
week.

Peter’s employer, Albert Havik Hospital, had been suf-
fering increasing damage on a daily basis. At a certain 
point, it was no longer even possible to consult the 
surgery schedule, never mind schedule new surgeries. 
The local newspapers had been following the debacle 
closely for days, and the hospital saw its reputation 
become more compromised every day.
No, it certainly had not been a pleasant week. It was 
the final nudge he needed to get him to start looking 
around for a new challenge.

As he saved the job vacancy to his notes app, he found 
himself wondering once again: could he have seen it 
all coming? It had actually been only a minor update; 
a standard release. Everything had been planned me-
ticulously, and there had been no problems when they 
went live over the weekend.

The mood in the department had been exuberant, 



12

since a lot of people had been waiting a long time for 
this release.

First thing on Monday morning too, nothing but happy 
faces. But by the end of the morning, the first reports 
that the scheduling module was down were coming in 
at the service desk, and in no time, the system collap-
sed like a house of cards. By lunchtime, Peter and the 
software architect were called to the director’s office 
to explain themselves.

After that, everything happened at lightning speed: 
while everyone behind the scenes was working hard 
on a patch, Peter was preparing a press conference 
with his director and the PR department. The media 
were bound to get wind of it, so it was better to beat 
them to it. Soon the team was working at all hours in a 
frenzied attempt to limit the damage.

In retrospect, the consultants he had hired to get the 
system back up and running had of course seen it all 
coming. A new search function in the electronic health 
record, which is also encrypted, is just asking for over-
heated servers. I’m quite sure the consultants would 
have known that.

But then, of course, hindsight is 20/20. There simply 
hadn’t been any time to test that minor update as 
extensively as they should have. And if they hadn’t 
implemented that handy search function now, they 
would have had to wait another six months for the 



13

next release. Then Peter would have had to face the 
wrath of the entire hospital.

Oh well, it’s all behind him at this point. One blessing 
in disguise is that the system was back up and run-
ning just before Peter would head off to the Gartner 
Summit, definitely one of the year’s highlights. Time 
for a bit of light relief. Time to try and forget and in the 
meantime, start thinking about the future.



14



15

2. A big monolith

“Welcome on board, would you like a newspaper?” Pe-
ter shakes his head. After the misery of the past days, 
he can’t bear to look at another newspaper. Today’s 
paper will probably say the problems at the hospital 
have been solved, but the news will no doubt be just 
a small paragraph somewhere on page seven. The 
headline HOSPITAL NEEDS TRANSFUSION, plastered 
across the entire width of the front page last Friday 
still makes him shiver. So it’s best to pass on the news-
paper for now.

Perhaps the biggest advantage of flying business class 
is that you get to your seat straightaway. It’s a great 
feeling knowing you can just decompress and switch 
off for the next couple of hours. With a deep sigh, Pe-
ter lowers himself into the comfortable seat.

“Everything all right?” says a voice from the adjoining 
seat.

“Oh yes, just great!” Did that sound a bit over the top? 
Peter is just so happy to be sitting down.

“Good. I only asked because of the deep sigh….”

Oh, I’m just relieved to be sitting down, that’s all. Oh 
well… Let me introduce myself. My name is Peter de 
Graaf.”



16

“Not the Peter de Graaf from…” Peter’s neighbor 
points to the newspaper he’s holding in his left hand. 
Almost simultaneously, they read aloud from a section 
of a column on page 9:

“According to IT manager Peter de Graaf, the problems 
with the information system at Albert Havik Hospital 
have finally been solved.”

“Why, yes, the very same. Why do you ask? Are you 
also in IT?”

“I sure am. Harold ten Kate, CIO at MaxAir. Nice to 
meet you.”

“Ah, a fellow professional. And one who works for an 
airline. Pleasure to meet you. Well, I’m really glad I’m 
able to attend the Gartner Summit.

“I can imagine. I’m looking forward to it too. But… I 
have to say, well done! That’s some impressive dama-
ge control you did there.”

“You don’t want to know how many liters of sweat I 
lost this last week.”

“Spare me the details,” Harold says with a broad 
smile. “If you ask me, you were just really unlucky with 
that update. Do you feel like talking about it or would 
you rather have a drink first?”



17

Well, I wouldn’t say no to a Johnnie Walker…

Peter launches into his story. “Honestly, we never 
saw this coming. Everyone was so happy to see that 
update finally implemented. Then it turns out that a 
new fuzzy search function has introduced a bug in the 
query functionality of the electronic health record, 
which brought all processes to a standstill.”

“I imagine all your other systems are dependent on 
that EHR?”

“That’s right. Every department has to be able to 
consult the patient card and enter changes relating to 
the treatment. If that functionality fails, their hands 
are tied.”

“I see. So actually, you introduced a central dependen-
cy, a single point of failure, into your landscape with 
that EHR.”

“Maybe. But it’s not as though we didn’t carefully con-
sider before choosing this EHR. There was an extensi-
ve selection process beforehand. This system allows 
us to cover the functionality for many departments in 
one go. And we’re pleased with that, as such, because 

“A single system for all departments in your company is a 
corporate risk”



18

it’s a huge improvement on the old situation.”

“I bet you used to have a lot of customized software?”

Peter nods. “Exactly. And all sorts of legal require-
ments and standard expense processes are covered, 
and actually, we’d rather not spend our IT capacity 
on that. In that sense, as a hospital, our back-office 
processes are not unique. But there’s a downside to it 
as well: we’re now stuck with the twice a year release 
cycle of that supplier.
And if the supplier finds our requirements too specific, 
they’re not always willing to incorporate them.
See, this is roughly what our Hospital Information 
System looks like.”



19

Even though he’s reminded of all the problems of the 
past week, Peter is feeling more relaxed than he has in 
quite a while. Obviously, the whisky helps, but meet-
ing a fellow professional who actually wants to hear 
his story makes him feel almost happy.
He can’t think of a single colleague at the hospital who 
is as empathetic as Harold.

“I totally get it,” replies Harold. “Our airline also makes 
use of large ERP applications that we’re very satisfied 
with. But we have to ensure that bugs in those appli-
cations don’t undermine our entire landscape. And 
we’ve now found a really great solution for that.”

“Oh?”

Harold settles himself for his story. “Two years ago, 
we were in exactly the same situation as you are now. 
When the ERP application was down, we couldn’t 
even manage to let people check in. All the passenger 
information was recorded in that one ERP application 
based on the well-known architecture principle that 
you record the information once, and use it multiple 
times. We had to do everything manually, even things 
that didn’t seem to have anything to do with that 
application. Then it turned out that a lot of specific 
applications from departments were linked through 
services, and therefore stopped working when that 
application was briefly unavailable. Our architects 
searched for a way to make the rest of the landscape 
independent at runtime from that ERP application; to 



20

keep things running smoothly when something else 
is unavailable for some period of time. We’ve found 
a good solution: microservices architecture. It allows 
autonomous, relatively small services to communicate 
with each other by means of messages.”



21

3. Patience is a virtue

“Cabin crew, boarding completed.”

This is going to be a long flight, but Peter’s not worried 
about being bored. They haven’t even taken off yet, 
and he’s already heard so many interesting things that 
the journey is already worthwhile.
He quickly checks his messages.
Dear Peter, Groningen University Hospital read how you 
solved things and would really like to meet you. Infor-
mal interview next week, is that okay?

Groningen, that would mean relocating. But an infor-
mal interview can’t hurt. Absolutely! Back on Monday! 
Peter sends the message before switching his phone 
to flight mode.

So, basically, Harold used to work precisely the same 
way at MaxAir as the Albert Havik Hospital currently 
works.

“But hang on,” Peter says. “Autonomous functioning 
services…, doesn’t that mean you have to deal with 
data duplication? If there’s one thing our software 
architects despise… Well, let’s just say we’ve had 
some less than pleasant experiences with a lot of 
stand-alone databases that came into existence in the 
client-server era. We made the switch to an ERP sys-
tem precisely to solve all the hassle of ‘differing truths’ 



22

in various systems.”

“Yes, been there,” Harold replies. “You don’t want all 
sorts of different applications administering the same 
information with differing truths about a passenger 
or a patient floating around in your system. But there 
are other, possibly better solutions than reducing 
everything to a single monolith, such as, for instance, 
determining ownership of data. It’s where you agree 
that everyone can store a copy of the information, but 
that only one system is responsible for changing  that 
information. If that one system fails, for whatever rea-
son, such as our ERP or your EHR, the other applicati-
ons can keep running on their own copy of the data.”

“Right, so that way you can define multiple systems, 
with their own logic and data collection, and even 
design them to perfectly suit the department using 
them.”

“Exactly! Now, let me see… For your situation, it 
would look something like this.” Harold takes a pen 
and starts sketching enthusiastically.



23

Peter is thinking out loud. “That would certainly help 
us to tailor those specialized systems to the specific 
needs of that department. Departments often com-
plain about the lead time for changes, because we 
are obliged to prioritize new functions in the system 
hospital-wide.
But can’t that cause problems, if not every depart-
ment is looking at exactly the same data? What if 
changes to the data in the central system are not di-
rectly applied to the data in the department’s system? 
That department is then looking at outdated data.”
Apparently, Harold was expecting that question. 



24

“That’s true – you do indeed have to take into account 
a certain degree of temporary inconsistency. The 
question is whether that’s such a bad thing. I mean, 
does it really make such a big difference if a change in 
a patient’s information arrives a second or two later in 
another system?”

“Hmm, not always. A patient’s change of address is 
not directly important to the treatment. In fact, the 
department systems don’t really need that kind of in-
formation at all. But there is one really important com-
ponent for us: the patient card. This card contains in-
formation such as which medication a person has been 
given and any allergies they may have. For example, 
if a patient comes into the emergency department, is 
treated and then goes to the OR, it’s important that 
the OR has access to up-to-date information.”

“I can well imagine,” Harold says with a laugh. “That’s 
pretty crucial information. But how do you currently 
deal with that? What do you do if that information 
isn’t available because of a failing EHR?”

“In the case of this kind of crucial data, we adhere to 
the principle that there should always be a paper copy 

“Availability of systems is often more important than being 
able to access the latest version of the data everywhere at 
any time”



25

with the patient, containing the most recent informa-
tion. We don’t always have time to update the system 
anyway. Often we don’t get around to that until after 
the operation.”

“That’s what I mean. In cases like that, you need 
procedures you can always fall back on. It’s the same 
with disconnected systems. Ultimately, everything 
can fail at some point. The advantage of separate 
systems is that often you can still extract information 
from one system while the other one is down, such as 
consulting patient information in the OR if the EHR is 
temporarily unavailable. The most recent updates are 
on paper, but the rest of the information is accessible. 
And remember, as soon as all the systems are up and 
running again, any messages still get processed. They 
call that eventual consistency. You choose to make the 
availability of information more important than the 
guaranteed consistency at every point in time.”

Peter is starting to understand. “Okay, so if we take a 
good look at the company processes and the transfer 
moments between departments, it seems to me we 
could work perfectly from a model based on eventual 
consistency, and so we could surely apply that kind 
of microservices architecture. The EHR remains in 
existence, but thanks to the services and the exchange 
of messages, it is fully disconnected from the depart-
ment systems.
Mind you, I do see another challenge: how do we get 
that many small, different, connected services te-



26

sted and into production? It was enough of a drama 
just getting the EHR operational and that’s only one 
thing.”

Harold leans forward. “Ah, and this is where it gets 
really interesting!”



27

4. Don’t be afraid to think small

Just thinking about the amount of time and effort it 
took to get that EHR up and running made Peter feel 
anxious again. Big releases, slow updates; they’re ner-
ve-wracking. How does Harold manage with all those 
microservices?

Harold resolutely empties his glass and starts to ex-
plain. “With a monolith, all the work is concentrated 
around the big release moments. And the supplier 
often determines more or less just when such a re-
lease is deployed. The test effort in particular is usually 
huge. And systems often need an entire weekend of 
maintenance, people need to be stand-by… You know 
the drill.
The idea behind microservices is that not only you can 
operate each service separately, but you can also de-
velop them and take them into production separately. 
You have tiny bits of functionality, in which testing 
activities, risk and impact are all limited to that small 
part of your system. That also means that those little 
bits of functionality can go live much more often than 
was the case with big releases up to now, which means 
that you can offer added value to your organization 
much faster.”

“Ah yes, continuous delivery, right? I read something 
about that on the Summit site.”



28

“That’s the one. We’ll be hearing that term more than 
once in the next few days, I imagine.”

Peter remembers something else he saw on the site, 
and has a question about it. “But I thought that was 
only for the big tech companies, the Googles and the 
Amazons. I mean, how do you organize something like 
that?
It all sounds wonderful, but how are you going to take 
those services into production separately, while, in 
terms of functionality, they are all interdependent?”

“I’m not saying it’s easy. For example, services have to 
be programmed in such a way that the links to other 
services keep working when new versions are taken 
in production. But that trick is certainly not reserved 
for the big tech companies. You will, however, have to 
invest in the knowledge and skills of your IT staff to 
implement it well.”

“I get that. It actually all sounds so logical. When I get 
an update on my mobile phone or laptop, I expect that 
all the other apps I have installed will keep working. 
But, as you know, money is always an issue, and the 
IT organization is already costing the hospital a pretty 
penny. The introduction of the EHR was very hard and 
expensive. I wouldn’t know how to sell that to the MT 
and the Board. That would be like me saying: that last 
investment didn’t achieve the results we’d hoped for. I 
need more time and more money.”



29

 “That’s always a justified concern,” Harold agrees. 
“But let me put it another way: how important is the IT 
department to your hospital these days?”

Peter knows what he means. The IT department is, of 
course, essential. He has personally experienced what 
happens if the systems no longer function properly. 
Before you know it, the hospital gets a reputation for 
being unreliable, and in a hospital, people’s lives are at 
stake.

“Of course, IT is essential,” Peter replies. “That’s why 
we invest so heavily in it. But it’s still an expense on 
the budget, and the budget has its limits.”

“It’s interesting you call it an expense. Tell me, how 
does your hospital distinguish itself from others in the 
region?”

“Well, now you mention it… Besides the fact that we 
provide good care, obviously, we also try to improve 
our services. For example, by restricting waiting times, 
limiting errors in administration, providing a good 
customer experience and taking a personal approach. 
Unfortunately, with this catastrophe surrounding the 
EHR, we haven’t been all that successful recently…” 

“So, as I understand it, IT isn’t only important in sup-
porting the functioning of the hospital, it also plays an 
important role in the edge it gives you with your staff, 
the health insurance companies and the patients. 



30

Doesn’t that make the IT department more of a reve-
nue-generating department than an expense?”

Peter nods thoughtfully. “Hmm, as a CIO myself, I 
hadn’t thought of it that way before… I’ve always had 
to elicit investments through the Board by coming up 
with all kinds of doomsday scenarios, or describing 
acute problems that needed solving, but they would 
naturally be more inclined to invest if they saw the 
opportunities for us in that area!”

Harold laughs. “It’s all a matter of perception. It’s not 
only about solving problems; your organization will 
be a fair bit more agile if your IT systems are more 
flexible.
Once you realize that, investing in the knowledge and 
skills of your staff is a no-brainer. And remember that 
the new way of working in your IT department will 
ultimately be just as normal as what you’re used to 
now. Obviously, you have to go through a pretty steep 
learning curve first, but eventually, you will reap the 
benefits.”

Peter has to admit that the idea of those microservices 
sounds like a welcome solution. And yet something’s 
still bugging him. He can’t stop thinking about the 
huge electronic health record that was delivered 
only five months ago. He’d even organized a dinner 
party for the whole IT department to celebrate the 
milestone. So that can stay, but how does that all 
work together then? And won’t it drive the users mad? 



31

He can already see complaining nurses, doctors and 
colleagues from the information counter standing in 
front of his desk again.

Not only does the CIO of the airline know everything 
he needs to, he also appears to be able to read Peter’s 
mind. “We had one large system too. A year and a 
half ago, we started constructing a shell around that 
system, with services that unlock the application. Our 
ERP system is still in use, but we have added more and 
more services. You can also just keep working with the 
EHR’s user interface.”



32

“Okay, so with microservices you have less chance of 
other functions and other departments running into 
difficulties, but the problem of the search functionality 
still hasn’t been solved.”

“We’ll get around to that later.”

 

“Using microservices provides the organization with flexi-
bility and agility”



33

5. Reading and writing

As often as he’s seen the inside of an airplane, Peter 
still gets a somewhat queasy feeling at the moment 
the aircraft leaves the ground. It’s that split second 
when the wheels leave the tarmac and the plane al-
ways seems to sway a little.

“Are you all right there, neighbor?”

“Oh yes, sorry about that.” Peter has no idea why 
he’s apologizing. “I’m okay with flying, except for the 
take-off…”

“You know what helps?” Harold says, and gestures to 
one of the cabin crew to see if he can order something. 
Not until the seat-belt sign is turned off.

“The same actually goes for your planning system too, 
that above all, it’s important to be able to view the ap-
pointments, right? So that appointments can be kept 
and nobody needs to be sent away?”

Peter nods. “That’s more important than the additi-
ons. Although we obviously also have to be able to 
schedule appointments.”

Harold is really getting into his stride again. “So what 
if you design the functionality around planning as two 
separate services? Then you can create one microser-



34

vice that is responsible for registering appointments, 
and another one for viewing appointments. Those two 
services are both part of the planning domain, but 
have different objectives. That pattern is also known 
as CQRS, which stands for Command Query Respon-
sibility Segregation. Basically, that means separating  
the reading side from the writing side. In your case, 
the service responsible for registering appointments 
is the writing side, and the service for viewing the 
appointments is the reading side.

The great thing about it is that the system is no longer 
as vulnerable. If the writing side is unavailable for a 
while, for example due to an error during the imple-
mentation of a system update, the reading side is still 
available, and staff can still view the appointments. 
Nobody needs to be turned away.”

Peter has to admit that it sounds extremely appealing. 
“But, if those two microservices are completely sepa-
rate, how do they stay in sync? There has to be some 
sort of link, right?”

Again, Harold looks like he expected the question. 
“The microservice that deals with registering appoint-
ments always contains the truth. We call that the 
‘system of record’ or ‘single point of truth’. From the 
writing side, we can publish messages, based on which 
the reading side can update its data. Every time a new 
appointment is scheduled, a message can be sent, 
for example, containing information relevant to the 



35

appointment. The read side can use the information 
in the message to update its own database. So the 
reading side you consult is completely separate from 
the writing side.”

And still there’s that nagging little voice in Peter’s 
head, and again it’s talking about data duplication. 
“So you’re saying that there can be some lapse of time 
between the scheduling and synchronization with the 
reading side? If I schedule an appointment, shouldn’t 
that be immediately visible to the staff?”



36

“It depends on your definition of ‘immediately’,” Ha-
rold answers. “Say it takes five or ten seconds longer 
until the reading side is updated. Is that a problem?”

“No, not really. When you put it like that, it’s not so 
bad. Appointments are always scheduled at least a 
day in advance.”

“That is often the case,” Harold agrees. “This is one of 
those situations in which you are dealing with eventu-
al consistency. The advantage is that it increases the 
availability of the individual services.”

“Okay, you’ve convinced me that this could work for 
our planning system. But it seems to me that it would-
n’t always be possible.”

“Not always,” says Harold. “There are some situations 
in which you simply must have transactions in order to 
keep two or more systems synchronized. It’s always a 
consideration. In the end, it’s about what’s more im-
portant in a particular situation: availability or consis-
tency. And ultimately, this decision will be determined 
by what provides the most value for the business. In 
your situation, availability is clearly more important. 
Appointments could be registered on paper, so to 
speak, if the writing side is down. It’s not ideal, but it is 

“Using CQRS increases the availability of systems”



37

an exceptional situation.”
Just as the aircraft appears to have straightened out, 
and the seat-belt sign should go off at any minute, the 
intercom crackles on: “Unfortunately, we’re not yet 
able to pass through the cabin. We’re experiencing an 
unusual amount of turbulence at the moment. We ask 
you to remain seated with your seat-belt fastened.”

Fear of flying is irrational, Peter thinks to himself. And 
turbulence is a challenge.

 



38



39

6. Time flies

Peter hadn’t really needed that Johnnie Walker to help 
him sleep like a log throughout most of the flight. I 
must have been exhausted, he thinks to himself. He 
can see the lights of Las Vegas through the airplane 
porthole.

Just before the aircraft seems about to land, the engi-
nes suddenly surge. The nose is pulled up and the pla-
ne veers off to the right, away from the landing strip.

“Hey, a go-around!” Harold’s voice betrays a certain 
degree of excitement. “Probably because of the 
strong side wind.”

“Good evening, ladies and gentlemen. This is your 
captain speaking. As you may have noticed…”

Peter rolls his eyes. “One more time around the desert 
then.” He’s not sure what’s making him more impa-
tient: the discomfort of the airplane, the prospect of 
a hotel room with a bed or the prospect of possibly 
receiving a message about a potential new job.

Fortunately, the go-around works and the second 
attempt at landing is successful. Apparently, Peter is 
not the only one who is visibly relieved by this, as he 
hears a round of applause erupt from the economy 
class. Peter would usually associate that with a cheap 



40

charter flight, but today he can see himself joining 
in thankfully. He’s never experienced turbulence as 
bad as on this flight. His neighbor had tried his best 
to reassure him: an aircraft is not a monolith, and the 
chances of crashing are smaller than those of winning 
the national lottery, but even Harold had looked a bit 
worried now and then.

Just then, Harold takes out his mobile phone. “Look, 
this is our newest app. We launched it just last year. In 
the flight information section, you can see that we’ve 
just landed. To achieve that, we constructed a number 
of services that also use CQRS. If you look here, you 
can see that there’s been a go-around.”

“But, wait a minute – you don’t want that kind of infor-
mation being available to your customers, do you?” 
Peter sounds surprised.

“No, you’re right, it’s not relevant for everyone. I can 
access it because I use an in-house version of the app 
that is only for staff. This version consults other read 
models than the consumer’s version.”

“Cool! Hey, can we turn off flight mode yet?”

“We’ve got Wi-Fi on board, didn’t you know?”

Peter could kick himself. He selects the Wi-Fi chan-
nel and while he’s waiting for a number of messages 
to download from his service, Peter downloads the 



41

MaxAir app. “Well I never, you’re right! On my phone, I 
see that we’ve landed, with a twenty-minute delay.”

“Exactly!” Harold agrees enthusiastically. “And don’t 
forget that those events have led to many other even-
ts. The fact that we had a go-around probably means 
that, at this busy time, other aircraft have had to circle 
around, and the approach planning in the air traffic 
control software is being automatically updated. And 
when that leads to flight delays, that gets displayed on 
the flight information boards at the airport. All caused 
by a few events.”

“And everything is ultimately ‘eventually consistent’ 
again?”

“That’s right. The original events, such as ‘Aircraft lan-
ded’ and ‘Aircraft going around’ are stored in a micro-
service that represents the writing side. Other services 
form the reading side, and update the displays that 
you are now viewing in the app.”

“And how do you store this sort of event in the writing 
side?” Peter asks. “Is that simply a relational databa-
se?”

“That’s certainly one possibility. But we decided to use 
event sourcing. That’s an alternative way of storing 
the sequence of events that has led to a specific state; 
not in a relational database, but as a list of events that 
have occurred in time. Since we append all events to 



42

the list, updates are implemented faster than when 
using the traditional approach, where we have to lock  
data when we update it in order to prevent concurren-
cy problems.”

Now Peter’s a bit confused. “Wait a minute, that 
sounds complicated. Aren’t you basically recording the 
aircraft’s status? Wouldn’t it be easier to make a status 
field in the database, where you can place an update 
as new events come in?”

“On the contrary. The problem with updating data-
bases is that you destroy information. If we were to 
change the information in the database, based on 
incoming events, we would only be maintaining the 
‘current state’. Then we would only know the most 
recent status of an aircraft. That wasn’t enough for our 
system. We want to be able to pull up the complete 
status history of the aircraft, or in other words, all the 
events that have taken place. That way, we can see 
how much time there was between the go-around and 
the ultimate landing, for example.”

Peter thinks about this for a moment. “That sounds a 
bit like an audit log.”

“Absolutely! That’s an automatic side-effect of event 
sourcing. And it isn’t necessary to record the current 
situation with a separate audit log next to it, des-
cribing how that current situation occurred. Event 
sourcing fulfills both needs.”



43

“But that would seem to me to be difficult to query 
then. For example, how can I easily find out which 
aircraft have a ‘Landed’ status?” Peter wonders.

As usual, Harold has the answer. “That’s exactly what 
we use the read models for. Because we’ve disconnec-
ted the responsibilities for reading and writing, it’s un-
necessary to support an extensive query functionality 
in the event store, where all those events are stored. 
That makes the design of an event store simpler than 
that of a complete database. In addition, we can trace 
the ‘current state’ of an aircraft by reading the sequen-



44

ce of events from the beginning. Even better, we can 
also determine the status of an aircraft at any given 
time, simply by viewing all the events that occurred 
until then.”

Peter wonders why MaxAir would want to save all this 
information. “Are you doing all this purely for audi-
ting?”

“Sometimes you just need to review specific informa-
tion,” says Harold. “For us, for example, it’s really use-
ful to know how many people who book a flight also 
select their seat. Do they click directly on the place 
they reserve? Or do they click on various seats and 
come back to their first choice, when it turns out that 
extra legroom is much more expensive? If you want to 
be able to carry out that kind of analysis, you need the 
history of events.”

“But what if it turns out that a wrong event has occur-
red?” Peter is pleased to note that despite the long 
flight, he’s still on his toes. “What if a customer later 
changes the seat they selected when booking their 
flight? Then you would have to go through the enti-
re sequence of events to trace the relevant one and 
change it. That’s an awful lot of work.”

“With event sourcing, the dimension of time becomes an 
explicit concept in the software”



45

“That’s the great thing about event sourcing; you can’t 
change events. Ever. That’s equivalent to falsifying 
history. The events took place, that’s a fact. But new 
events that effect a correction, they’re allowed.
You might compare it to the way accountants work. 
You do know that accountants never use a pencil and 
eraser? You must be able to prove where a transacti-
on came from, at all times. Instead of disposing of an 
event, you add a compensating event.”

No falsifying of history. Peter is really enthusiastic 
about this: this way, all the changes in the scheduling 
system would be traceable.

He checks his mail: yet another message from a 
potential employer. This time with an actual job offer, 
even better than the one in Groningen. And yet, the-
re’s a sudden doubt; now he’s not so sure he’s ready 
to leave his current employer. Maybe there’s still too 
much to be done…



46



47

7. If the shoe fits...

“Passengers from flight WS7102, please proceed to 
luggage belt 42.”

Excited by his conversation with Harold, Peter can’t re-
sist asking another question. “So, that system knows 
we’ve landed and where we can pick up our luggage. Is 
all that information retrieved from the same system as 
the app on my phone uses?”

“No. On the contrary: the system you see here is 
not an AirMax system at all, it belongs to McCarran 
International Airport. This airport does, however, use 
a mainframe; the system is updated based on the 
events that we, as an airline, publish, and so it stays up 
to date.”

“And is there an event store behind it?”

“No again,” Harold says with a wink. “And there 
doesn’t have to be. The airport is only interested in 
the most recent state of affairs based on the events 
we publish. If I’m not mistaken, there’s a relational 
database behind it. But that’s not necessarily always 
the best choice. For example, in our app, we offer 
the possibility of linking with other users. We use a 
graph database to record this, rather than a relational 
database. In a graph database, you can easily record 
different relationships without having to introduce all 



48

kinds of junction-tables, as you would normally have 
to do in a relational database.”

“I can see what you mean. So you can use different 
types of database, depending on the functionality you 
want to offer the users?”

“Exactly. Another example is search functionality. 
Often, a search engine is used that is good at indexi-
ng data and enabling complex search tasks. And that 
applies not only to storage, but also to your architec-
ture and the technology stack you’re using. It has to 
suit the solution you want to offer too. For example, 
for our microservices, we chose Java, but our front-
end was built with ASP.NET, because our front-end 
team is at its most productive with this. So instead of 
enforcing that all the teams within the organization 
use a single standard, each team chooses what works 
best for them and for the desired solution. We call that 
Polyglot ‘X’.”

“A team that can make use of fit-for-purpose tools and 
frameworks is able to perform at its best”



49

This is music to Peter’s ears. “So you no longer need to 
train all the teams if you want to introduce a new tech-
nology? Brilliant! But how do you prevent an explosion 
of various tech stacks and frameworks?”

“You want to give teams room to choose the best 
tools for the solution, but obviously within certain 
frameworks and guidelines. The application architec-
ture and management aspects also have to be consi-
dered.”

Freedom to choose. It sounds like a bit of a revolution 



50

to Peter; no more haggling between Java and .NET 
developers. Each team chooses its own language, just 
as long as the microservices can communicate with 
each other.

He finds himself having to keep himself from being 
totally carried away by Harold’s story. Would this 
approach be able to prevent any future crisis with the 
planning system? The picture looks right in his mind, 
and it all seems perfectly logical, but would it work 
in the hospital? First, I’ll discuss it with my team, he 
reassures himself.
One thing is sure, though: Peter is no longer dreading 
that first team meeting after Las Vegas; he’s actually 
looking forward to it!



51

8. Positive results

“Hey, Harold! Has the pain gone down a bit?”

“Yes, thanks. And just as well. It was unbearable.”

“I know how it feels. I’ve had a broken leg. Though 
mind you, mine was from a skiing holiday, not the 
moving walkway at Schiphol Airport…”

“And despite the nice lady’s warning: mind your step… 
That’s the last time I ever go on one of those stupid 
things.”

The unfortunate end to the Las Vegas trip has obvious-
ly soured Harold’s mood. “How long will you be in a 
cast, do you think?”

“The doctor was just here: the results of the tests are 
positive, so I think I should be up and about soon.”

“That depends on the kind of tests. In a hospital, posi-
tive test results aren’t always a good thing…”

“Ha! No, I mean positive in the sense of favorable.”

“Occupational hazard,” Peter says, laughing. “You 
wouldn’t believe how easy it is to confuse terms in 
the medical world. That even goes for something as 
simple as ‘left’ and ‘right’; are you looking at it from 



52

the patient’s point of view, or your own? If you don’t 
introduce stringent rules to cover it, before you know 
it, the wrong limb has been amputated.”

“In my field of work, that’s much the same, of course.” 
Harold sits up slowly. “We’ve struggled hard with that 
in the past. Initially, when we only had a couple of 
microservices, it all seemed quite transparent. But as 
more and more departments became involved, con-
fusion of terms between developers and system users 
also increased. We realized that we would have to 
make better agreements about the terminology to be 
used and so we started applying DDD, domain-driven 
design, in our projects.”

Just look at us, Peter thinks. It’s only been five minu-
tes, and we’re back to discussing our work again. Talk 
about occupational hazard…

“One important element of DDD is the setting up 
of a universal language. We call that the ‘ubiquitous 
language’,” Harold continues. “It makes sure that de-
velopers, users and domain experts can all understand 
each other properly. This language is even used in the 
programming code, as a way of preventing errors in 
the software.” 

“Using DDD ensures that domain experts, developers and 
end-users can understand each other better”



53

Peter is skeptical; Harold’s explanation only raises 
more questions. “We tried to set up such a universal 
language for the hospital a few years ago. At that 
time, it was known as an enterprise-wide canonical 
data model. The project didn’t succeed though. The 
model simply became too complex. The financial soft-
ware, in particular, requires completely different infor-
mation on a patient than the software that schedules 
surgeries, which in turn is different from the informa-
tion used by the hospital’s pharmacy. Integrating all 
these differences is pretty much impossible.”

“A canonical data model, like the one you’re descri-
bing, would be great, but in our experience, it just isn’t 
feasible in a large organization,” Harold agrees.

“Larger organizations tend to consist of islands with 
their own responsibility, their own definitions and 
their own jargon. In DDD, we call these islands boun-
ded contexts, and each bounded context has its own 
ubiquitous language. It means that the financial de-
partment can continue to work with its own definition 
of a patient.”

“I’m not sure I’m following you completely. I thought 
the whole point was that departments could exchange 
information?”

“That’s right, but that means we only have to agree 
upon the data to be exchanged between the various 
bounded contexts. That’s often much less data than 



54

is actually used within the bounded context. So you 
could use a number of generic terms that have been 
agreed upon company-wide. I imagine that in your 
hospital, you make use of a patient number, and that 
everyone uses that same patient number, which al-
lows everyone to uniquely identify a patient.”

Peter is starting to understand. “But how do I know 
which bounded contexts there are? Do I have to go 
brainstorming about it with domain experts and then 
continue to fill them in?”

“Yes, that’s right,” confirms Harold. “In order to dis-
cover those contexts, and decide what really belongs 
together, we apply event storming. Using brown paper 
and sticky notes, we quickly chart which processes we 
have to support, together with department staff. We 
also define which relevant events or business events 
occur within these processes. When you’ve arrived at a 
clear view of these dependencies, it’s relatively easy to 
discover elements that have a strong relationship. And 
then we place them together in a bounded context.”

As interesting as it all sounds, Peter can’t hide the fact 
that he’s still a bit skeptical. “So after just one of these 
event storming sessions, you’ve charted your comple-
te domain with all the dependencies and interactions? 
I have to say that sounds a bit too good to be true. 
How do you ever get everyone involved to agree to 
that whole model? You just told me that a canonical 
data model was a bad idea, but this seems very much 



55

like a variation of one, but further complicated by the 
inclusion of the processes.”

“Maybe I didn’t explain it properly,” Harold says with 
a laugh. “The idea behind all those independent 
domains is precisely that they will also change inde-
pendently of each other. That’s why a model doesn’t 
have to be agreed upon company-wide. The teams 
themselves can compose the content of the domains, 
together with the domain experts. Then you will have 
to make translations of terms between the bounded 
contexts, from one context to the other, but that will 
generally only be necessary for a small percentage of 



56

all terms. Components that collaborate intensively 
will, after all, have been placed within the same boun-
ded context.”

“Yes, that does sound great,” Peter answers. “It would 
seem that DDD offers you a whole lot of tools, with 
which to deal with the various domains within your 
system landscape. But on the other hand, it feels a 
bit like overkill for some situations. I think complete 
bounded contexts could be filled in by standard appli-
cations in our hospital.”

Harold continues: “You certainly don’t need to apply 
it in detail everywhere. In fact, you can decide for 
each bounded context whether to apply the DDD 
principles there or not. And quite often, you’ll find it’s 
only necessary for a few core activities, in which you 
want to be distinctive, as an organization. Our airline, 
for example, has chosen to be competitive in its cost 
price. So it’s really important that our aircraft can carry 
as many passengers as possible, and be on the ground 
for maintenance as little time as possible. We built a 
smart planning service ourselves, for the logistics be-
hind that, because that’s a crucial functionality for us, 
and we couldn’t find it anywhere on the market.”

“So, as I understand it, you create independence by 
cutting your landscape up into bounded contexts and 
applying microservices within them. And that gives 
you flexibility, which enables you, for example, to 
locally adjust previous choices, if and when required. 



57

Whether that’s because you came across a standard 
application that can replace your current customized 
software, or because one of your company processes 
has changed due to an internal reorganization.”

“That’s right. So you have the option of changing the 
content of bounded contexts,” Harold continues. “This 
is also recommended by the best practices of DDD. 
As soon as a model begins to deviate from the reality 
of the company process, you just need to implement 
the necessary changes. Even if they are quite rigorous. 
Since the services within the bounded contexts are 
mutually independent, such adjustments are simpler 
to implement. In DDD terms, that’s also known as 
supple design.”

Peter scratches his head thoughtfully, letting Harold’s 
last words sink in. Harold keeps coming up with good 
ideas. “Oh dear, what time is it, actually?” Peter sud-
denly realizes they’ve been talking for some time and 
he’s due in an important meeting with the Board.

“Harold, despite the fact that you’re lying in our hos-
pital with a fracture, you’ve done me a greater service 
in this short time than we have done you. I’m afraid I 
have to rush off now. If you need anything else from 
me, let me know and I’ll take care of it. And make sure 
you’re up and about very soon!”

“I’m sure I will be. And don’t worry, Peter, they’re 
taking really good care of me here. I hope to speak to 



58

you again soon. I’ll contact you via WhatsApp.”

With a firm handshake and a sincere smile, Peter walks 
out of the ward toward the boardroom. As he walks 
along the corridors, all the new ideas and concepts he 
has heard from Harold, and at Gartner, are filling his 
head. Immediately after the conference, Peter had 
succeeded in convincing the Board of the importance, 
and even necessity, of using web-scale architecture 
to cope with the problems occurring within the IT 
landscape. At that time, he also charged his archi-
tecture team with the task of immersing themselves 
in the new concepts, and tentatively applying a few 
changes. In a process of ups and downs, which Harold 
had warned about, the teams had started to under-
stand it, and achieve more insight. It didn’t take long 
before the planning department delivered the most 
stable software, which also turned out to be the most 
productive. After that, other teams naturally became 
curious, and in the meantime, the entire IT landscape 
within the hospital is being constructed from small, 
autonomous services and there have been no more 
problems with total blackouts.

Peter is thinking back on all that as he puts his hand on 
the door of the boardroom. These meetings used to 
be something he dreaded, but not today. Not anymo-
re. Now these meetings are all about delivering good 
news, and securing investments. He takes a deep 
breath, feels a smile coming on, and steps confidently 
into the boardroom.



59

9. A couple of tips

What a year! Hammering the last tent peg into the 
ground, Peter realizes that it’s been nine months since 
the crisis at the hospital. And just after that, the trip to 
Las Vegas…

You might call this a well-deserved holiday. First, the 
search function had been patched, and then the whole 
Hospital Information System had been made more 
agile, a bit at a time. And along the way he had turned 
down one great job offer after another. No, he’s been 
able to do a good job for his current employer, and 
he’s even been given the necessary recognition for it. 
And anyway, there’s still more than enough to do in 
the coming year.

But now it’s time for two weeks of relaxation, at a sim-
ple campsite, near a small French village where he’s 
sure not to encounter any Dutch CIOs.

“You really don’t have to check your mail, you know,” 
the hospital CEO had assured him. And he was right, 
of course. They had an excellent team, and should one 
of the system functions go down, at least the whole 
thing wouldn’t collapse.

Not checking your mail, why is that so difficult?! I 
mean, Wi-Fi has penetrated even the most dense-
ly-wooded areas of the French countryside these 



60

days. Oh well, the tent is up, the children are enjoying 
themselves in the playground, so why not?

The mailbox has little of interest to offer. ‘Malfunction 
patient registering system solved’ – good. ‘Vacancy 
for head of ICT Ministry of Security’ – delete. Hey, a 
message from Harold.

“Peter, everything okay? I’m doing fine. You have to 
read this!”

Harold has attached a newspaper clipping to the 
email: ‘Not such a super day for supermarket chain.’ 
The article quotes the CIO of TopMarkt Netherlands as 
saying that the problems with the group’s information 
system have finally been solved. A minor update had 
resulted in a failure to replenish stocks. The upshot: 
angry customers, frustrated supermarket staff and 
distraught managers.

“Poor guy, I know what you’ve been going through,” 
Peter thinks as he pours himself a beer.

“Good afternoon! Sorry to disturb you.” Really? 
Another Dutch person at this campsite? Peter is taken 
aback.

“Hallo.” He greets his fellow countryman, who has 
apparently parked his car a couple of spaces further 
along.



61

“It’s a bit of a strange request, I know. I want to set up 
my tent, but I seem to have left my mallet at home. I 
left in a bit of a hurry. Could I possibly borrow yours?”

“Of course! And let me introduce myself: My name is 
Peter de Graaf.”

“Hi, I’m Lieuwe van der Woude. Oh, that’s great, thank 
you.”

This can’t be true. Peter has just seen that name 
somewhere. He unlocks his tablet, where the article 
about the problems at TopMarkt is still open.
“Not the Lieuwe van der Woude from…” 

“Why, yes, the very same. Why do you ask? Are you 
also in IT?”

“Yes, I’m even a CIO too, at Albert Havik Hospital. 
Listen, there’s no rush to put that tent up.
Care for a beer? I might just have a couple of tips for 
you.”



“Let me introduce myself. Peter de Graaf.”

“Not the Peter de Graaf from…” Peter’s neig-
hbor points to the newspaper he’s holding in 
his left hand. Almost simultaneously, they read 
aloud from a section of a column on page 9:

“According to IT manager Peter de Graaf, the 
problems with the information system at Albert 
Havik Hospital have finally been solved.”

What are the odds? You’ve just experienced the 
low point of your career and spend the entire 
flight to a conference in Las Vegas seated next 
to a fellow CIO. During the trip, the two of them 
explore various concepts of web-scale archi-
tecture: from microservices, CQRS and event 
sourcing to domain-driven design. What do 
these terms mean, why would you choose to 
apply these concepts and what kind of things do 
you have to take into consideration? For Peter, 
Flight WS7102 turned out to be a real journey of 
discovery.

WS7102 
fast forward to web-scale architecture

Flight


